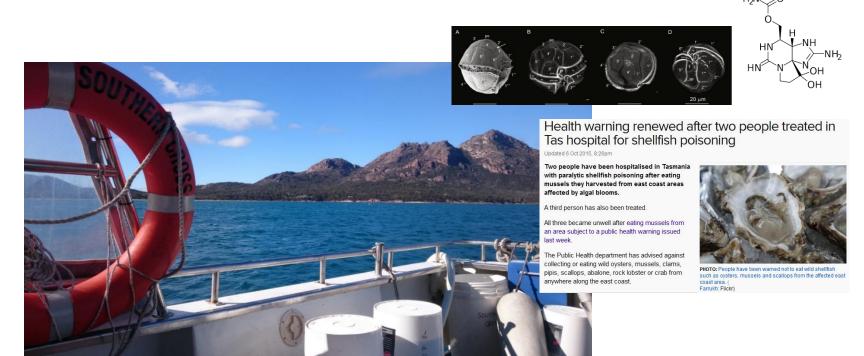
CRC for Food Agility NSW Oysters Transformation Project

Shauna Murray, Penelope Ajani, Arjun Verma, Hazel Farrell, Anthony Zammit, the Yield, Mike Dove, Wayne O'Connor



Shellfish safety risks associated with water quality

- Harmful algal blooms (HABs)
- E. coli, coliforms, viruses such as Hepatitus, Norovirus, especially associated with land runoff after rain or sewage spills

Project Aims

- To reduce closure days for oyster harvesting in NSW
- To better predict and model harmful algal blooms, oyster disease and oyster growth

Through collecting and analysing detailed water and oyster data in relation to real-time temperature and salinity measurements in 13 estuaries

Project Overview

Detailed data: Weekly sampling at 13 estuaries for 104 weeks

Citizen science : EXCELLENT sample collection

Real time: temperature and salinity sensors

Modelling: *E.coli*, disease, oyster growth and HABs

Biological data

Camden Haven

anning

Hawkesbury

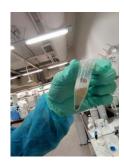
Georges

Shoalhaven

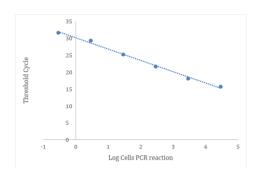
Wagonga Wapengo

Pambula Wonboyn

Physical data


Methods

Sample collection training


Preserved filter samples

DNA extraction (automated)

qPCR

Quantification

eDNA and qPCR for water quality assessment

- Detect rare species
- Detect cryptic species and picoplankton
- Quantitative
- Detect functionally relevant genes, ie toxin production

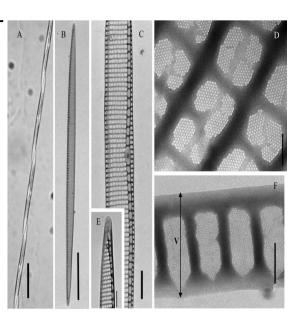
- Potentially very rapid (~1-2 hours)
- Potentially low cost for assays and equipment
- Potentially little need for expertise, ie can be done on site

Results to date

- ~2500 weekly water samples for bacteria and algae and ~1000 oysters already collected by growers across 13 estuaries.
- Review of Pambula management plan using data from the project
- Development of bacterial and HAB qPCR testing
- Comparison of qPCR vs high throughput sequencing for detecting pathogens and HABs
- Comparison of qPCR vs traditional plate counts

Results: Pambula Lake – salinity only management

- Modelling of the real time salinity compared to current management on rainfall and *E.coli* at Pambula
- ~3 fewer harvest area closures per year if Pambula adopted salinity only management = 9 days over 3 years.
- A real time, high frequency monitoring temperature and salinity sensor can be used to manage closures in Pambula Lake harvest area.
- During the initial implementation of such a management plan change, rainfall events would continue to be monitored

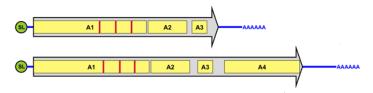


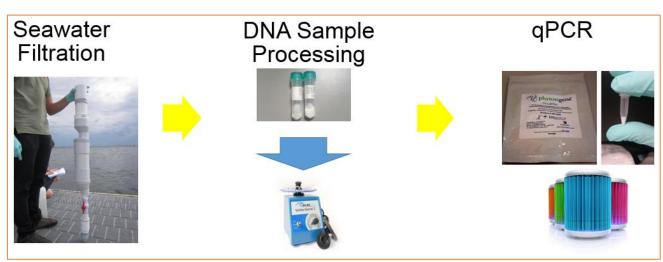
Results: Pseudo-nitzschia bloom in Wagonga

• 8 April 2019 Wagonga Inlet - Site 1

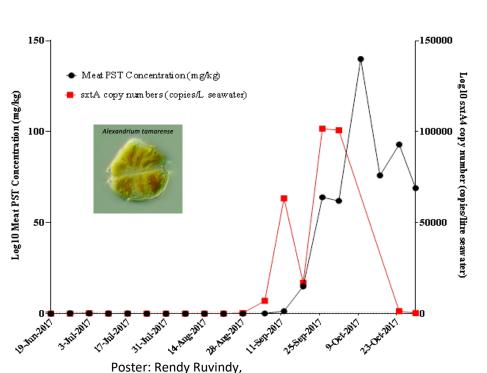
P. cuspidata (25.4 pg DA cell-1)

- Pseudo-nitzschia delicatissima group 430,000 cells/L (PAL 50,000 cells/L), however no positive biotoxins
- 4 species were isolated and are growing in the laboratory at UTS identified as P. cuspidata, P. hasleana, P. fraudulenta and P. multiseries
- P. cuspidata the most toxic of all Pseudo-nitzschia's tested from NSW; responsible for the bloom in 2010 which lasted 16 weeks
- awaiting toxin results for all four species
- Examining the cause of the bloom


Ajani et al. 2013


On farm HAB and *E. coli* detection using qPCR

- qPCR assay developed for on farm use
- Cost effective, rapid
- Amplifies functional gene sxtA from any HAB species



Murray et al 2011, Stuken et al 2011, Poster: Rendy Ruvindy

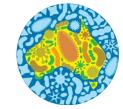
On farm HAB detection assay

Acknowledgements

Mark van Asten

- Rendy Ruvindy
- Allen Lo
- Matt Tesoriero
- Luke Clay
- Kate McLennan
- Dr. Nahshon Siboni

- Dr. Hazel Farrell
- Dr. Wayne O'Connor
- Dr. Michael Dove
- **Kyle Johnston**
- Aiden Mellor
- Ashley Rootsey

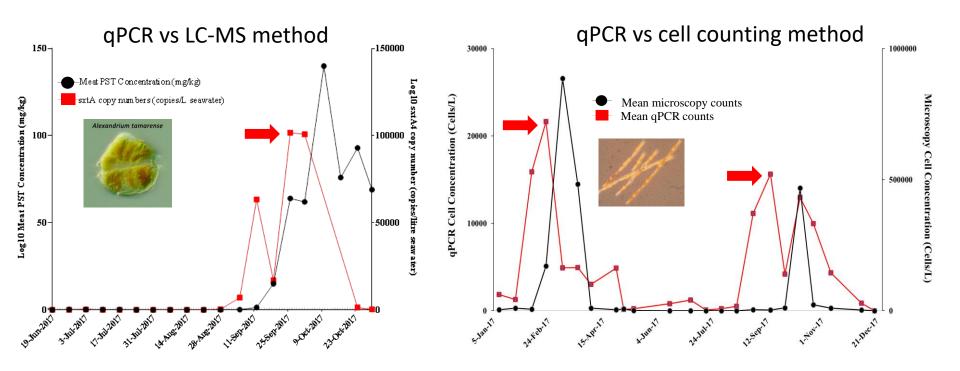


Huge thanks to all sample collectors over the past year!

Molecular genetic tools for estuarine water quality assessment

1. Molecular barcoding or metagenomics using eDNA BIOPLATFORMS AUSTRALIA

- Detect rare species
- Detect cryptic species and picoplankton
- Characterise entire community
- Detect functionally relevant genes, ie toxin production


BUT: for many organisms, ie microalgae, not quantitative*

Source: * Smith et al 2017 and references therein

Time frame: ~several weeks

Requires sophisticated and expensive equipment

Proof of concept

- Early detection and similar trends compared to traditional monitoring methods
- Gene copy number issues (Large genomes, inter-strain variation)